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Abstract—Generating 3D digital representations of plants is
indispensable for researchers to gain a detailed understanding
of plant dynamics. Emerging high-throughput plant phenotyp-
ing techniques can capture plant point clouds that, however,
often contain imperfections and make it a changeling task to
generate accurate 3D reconstructions. We present an end-to-
end pipeline to reconstruct surfaces from point clouds of maize
and rice plants. In particular, we propose a two-step clustering
approach to accurately segment the points of each individual
plant component according to maize and rice properties. We
further employ surface fitting and edge fitting to ensure the
smoothness of resulting surfaces. Realistic visualization results
are obtained through post-processing, including texturing and
lighting. Our experimental study has explored the parameter
space and demonstrated the effectiveness of our pipeline for high-
throughput plant phenotyping.

Index Terms—3D reconstruction, high-throughput plant phe-
notyping, point cloud.

I. INTRODUCTION

Capturing the dynamics of plant growth is a necessity for

plant biologists to gain new insights into complex relationships

between genes and phenotypes of plant organization under

different environmental stresses [4]. During the process from

a small seed to a full-grown plant with many leaves, the

3D structure of a plant exhibits dramatic changes. High-

throughput plant phenotyping becomes indispensable to quan-

tify the dynamics of high spatial or temporal resolutions with

accurate 3D representations [9].

High-throughput phenotyping generally mainly employs

two types of approaches to obtain 3D information of objects.

The first type are active approaches that use active sensors,

e.g., LiDAR (Light Detection and Ranging) [25], [28], to

directly capture 3D structural information by generating dis-

cretized 3D point clouds [13]. The second type are passive

approaches that use passive sensors, e.g., regular cameras, to

take 2D images from multiple views of an object and generate

3D point clouds from these 2D images [24]. 3D reconstruction,

converting a point cloud to a geometry that is represented

by triangles [23], [28], is then typically applied to facilitate

researchers to gain a better understanding of the 3D structures

of target objects.

Compared to traditional application domains (e.g., 3D mod-

eling in movies and games), high-throughput plant phenotyp-

ing has imposed new challenges in 3D reconstruction:

First, due to the subtle and complex structure of a plant and

the resolution limit of imaging devices, a resulting 3D point

cloud often contains various imperfections, such as severe

noises and missing points [17].

Second, a plant researcher usually desires to obtain accurate

3D digital descriptions that can capture subtle features (e.g.,

most dynamically changed areas on a leaf) during a plant

growth process, and such high accurate descriptions typically

are not demanded in most movie or game scenes where

visually appealing 3D approximations could suffice.

Third, most existing high-throughput plant platforms need

to move either plants or imaging devices to capture the entire

plant structure from different views [12], [16], and thereby

are hard to guarantee stabilized imaging conditions during

motions. In particular, unlike rigid objects, plant leaves can

be easily vibrated to incur blurred or noised imaging results.

This issue can be exacerbated with an increased movement

speed in order to get a higher throughput.

In this paper, we present a pipeline to reconstruct the

3D geometries of plants from their 3D point clouds. We

holistically address the key steps from noise reduction to

plant structure reconstruction. In particular, we develop a 3D

reconstruction method for plant leaves by leveraging certain

natural properties of leaves to address the imperfections in

their 3D point clouds. Post-processing, such as texturing

and lighting, has been applied to resulting 3D geometries to

enhance reconstruction results. We target specific plants (i.e.,

maize and rice) in this work, and our developed techniques

can be potentially applied to other plants. Our approach can

greatly facilitate researchers in studying 3D plant structures

and capturing detailed features from high-throughput plant

phenotyping.

II. RELATED WORK

Extensive research work has been conducted for 3D re-

construction from point clouds. Berger et al. presented a

comprehensive survey of the techniques [2]. In the plant

science community, these techniques have been exploited to

quantify the structural properties of different plants and their

components [1], [3], [29]. In the computer vision and graphics

communities, several approaches have been proposed for plant

reconstruction and modeling. For example, Ijiri et al. [14] used

simple primitives to approximate flower components via X-ray



Fig. 1. The main steps of our pipeline.

Computed Tomography. Livny et al. [19] used a lobe-based

representation to approximate the geometry of tree data.

As a plant can contain many parts (e.g., leaves and stalks)

with distinct geometry properties, the whole point cloud of a

plant usually cannot be reconstructed into a single geometry.

Instead, the points that belong to each component should be

segmented first, and then are tackled individually by 3D re-

construction algorithms. Therefore, the classification of points

is a critical step in reconstructing plant or plant-like structures.

Quan et al. [23] treated a point cloud of a plant as a graph

and used a graph cut algorithm to cluster the leaves. Liu et

al. [18] used a Gauss map to classify the surface types from a

point cloud of a facility with pipelines. They showed that the

surfaces can be classified by identifying the rings or patches

in a Gauss map when the types of surfaces are limited in

a point cloud. However, for plants, the surface of an actual

leaf is not flat. For example, a maize leaf is wavy along the

edges. Thus, if the normals of a plant point cloud are projected

onto a unit spherical surface, the points on the surface will

be scattered, which makes the Gauss map less effective for

clustering points. Li et al. [17] determined the label of a point

to a certain group by designing and minimizing an energy

function. Their approach can extract and track the topological

events like budding and bifurcation during the growth of

certain plant species (e.g., Dishlia) from time-varying 3D point

clouds. Schnabel et al. [26] used the RANSAC algorithm to

extract shapes by randomly selecting minimal points from

data and constructing corresponding models. However, the

RANSAC algorithm may take many iterations and incur high

computation costs, as it is based on a random search. In

addition, it can produce false models if the point cloud has

a lot of noises.

After different components have been identified from the

3D point cloud of a plant, the structure of each component

can be reconstructed. Surface fitting is used to find the

triangular mesh that can represent the point cloud and the

corresponding object. Several methods are commonly used.

Marching cubes [20] has been used for surface reconstruction

in which a tangent plane at each sample is estimated using

the k-nearest neighbors, and then the distance to the plane is

used to compute a signed distance function. Poisson surface

reconstruction is a well-known technique for creating water-

tight surfaces from oriented point clouds with normals [15].

Moving Least Squares (MLS) [11], [21] has been used to find

a smooth surface, a polynomial approximation of the local

neighborhood, from a local planar parametrization. B-spline

surface reconstruction, which describes the surface with B-

spline functions, is also available for point clouds [7].

However, it is challenging to directly apply these methods

to plant data to generate appropriate reconstruction results.

The point cloud of a plant can contain a relatively high

amount of noise, which can incur significant interference for

3D reconstruction processes. In particular, leaves of certain

plants (e.g., maize and rice) can be characterized by their long

and narrow structures, incurring a less accurate estimation of

the surface in a small local region of a leaf.

III. OUR APPROACH

We develop an end-to-end pipeline to reconstruct the 3D

geometry of a plant from its 3D point cloud. The pipeline

consists of three main steps: data acquisition and prepro-

cessing, leaf clustering and segmentation, and 3D model

reconstruction. Figure 1 summarizes the main steps.

• First, we collect the point cloud of a plant by either active

approaches or passive approaches. We apply the pre-

processing operations to remove the background points

and reduce the noises in the original point cloud.

• Next, we segment the 3D data points into individual

leaves through a two-step clustering approach. Different

clusters belong to the same leaf are detected and merged.

• Finally, we reconstruct the surface of each leaf using

surface and curve fitting techniques and combine all

the models of leaves together. We apply certain post-

processing (e.g., adding the textures of leaves and the

models of stalks and pots) and enhance the final model

of the plant to resemble the appearance of a real plant.

A. Pre-processing

1) Point Could Generation: In this work, we target maize

and rice plants. We place the plant on a rotary table and the

table can be rotated 360 degrees. We use two methods to

generate the point clouds of plants.

In the first method, we use a line laser scanner to vertically

scan a plant during its rotation to directly obtain the 3D point

cloud of the plant [28]. The resolution of the points is ap-

proximately 5 millimeters. We aggregate the depth information

collected to get the 3D point cloud.

In the second method, we use the 2D images taken by the

LemnaTec high-throughput plant phenotyping system located

at the University of Nebraska-Lincoln’s Greenhouse Innova-

tion Center. Specifically, we use the images of plants taken by

one camera from a side view and at every 72 degrees during

the rotation. We employ the structure-from-motion (SFM)

technique [22], [27] to reconstruct the 3D point cloud from

these 2D images.



(a) (b) (c)

Fig. 2. Pre-processing a point cloud of a maize plant: (a) the original point
cloud containing a plant (in the middle) and its background, (b) the point
cloud after background removal, and (c) the point cloud after noise reduction.

2) Background Removal: A point cloud often contains a

part of the environment (e.g., the ceiling or walls of a room),

which is called the background. The background is usually

very distinctive from the points of a plant in terms of their

depth values, and thus can be relatively easily filtered out

according to a depth range of the point cloud around its center.

Figure 2(a) shows an example of a point cloud containing both

a plant and the ambient background, and Figure 2(b) shows

the result after background removal.

3) Noise Reduction: Because of the resolution limit of the

devices (i.e., laser scanners and cameras) and the fine structure

of a plant, the resulting point cloud can often contain a

relatively high level of noise. In particular, there are significant

noisy outliers near the edge of each leaf. These points will

impair the quality of reconstruction. For example, clustering

methods may not be directly applied to a point cloud with

many outliers to generate optimal results.

We notice that the density of noisy points is typically lower

than the density of plant points. We compute the density of a

point pi, D(pi), in a point cloud P by finding the number of

points within a spherical kernel k centered at pi:

D(pi) =
1

γ2

∑
pj∈P

δ(‖pi, pj‖) (1)

where γ is the radius of k, ‖·‖ denotes the Euclidean distance

between two points, and δ is a distance weight metric defined

as:

δ(‖pi, pj‖) =
{
1, if‖pi, pj‖ ≤ γ

0, if‖pi, pj‖ > γ
(2)

A point whose density is lower than a threshold d is considered

as outliers and thus is removed from the point cloud. Given a

point pi and the point cloud center c, we set the threshold d
to be inversely proportional to the distance between pi and c:

d = k/(1 + ‖pi, c‖) (3)

where k is a predefined coefficient. This is because the density

and the noise level are higher for regions closer to the center.

After noise reduction, the plant structure becomes more

clear in the point cloud, as shown in Figure 2(c). However, this

may also incur a new problem where the points belonging to

the same leaf (particularly with a thin structure) can become

discontinuous, as some points at the intermediate positions

along the leaf can be filtered out as noisy outliers.

Fig. 3. A histogram of θ values.

B. Clustering and Segmentation

In order to correctly segment the points of a leaf into one

group, we employ a two-step clustering approach based on the

leaf shape. First, we cluster the points according to the angles

in their cylindrical projections by leveraging the symmetrical

property of maize or rice plants. Second, we further cluster

the points according to their shape connectivity. Third, we

detect the clusters that belong to the same leaf and combine

their partial point clouds. In this way, we can improve the

segmentation of a point cloud, and make each segmentation

correspond to an individual plant component (e.g., a leaf or a

stalk).
1) Angle-based Clustering: In general, the leaves of a

maize or rice plant grow up roughly around a vertical axis

at its center. This is a unique property that allows us to first

segment the points of different leaves according to their angles

with respect to the central axis. To this end, we transform the

points from their original Cartesian coordinates (x, y, z) to

the cylindrical coordinates (r, θ, z), where θ and r denote the

azimuthal coordinate and the radial coordinate, respectively.

We classify the points by analyzing the distribution of θ
values. Figure 3 shows an example of the histogram of θ values

of the leaves of a plant. We first construct a fitted histogram

curve (i.e., the red smoothed curve in Figure 3) and compute

the local extrema of this curve to detect the peaks. The peaks

in the histogram correspond to the main directions of leaves.

For example, there are several peaks (i.e., the green triangles)

detected in Figure 3. Second, we compute the width of each

peak as the distance between the borders (i.e., the purple lines).

A border is the horizontal position of the lowest valley between

two neighboring peaks. The range between two neighboring

borders is used as the range of the peak fall between these

two borders. Another possible way to determine the width of

a peak is to use fuzzy sets [30], where all the bins that fall

between the extension of the two slopes of a peak are assigned

to that peak. In this way, some bins can be assigned to two or

more peaks, and should be recorded and treated in a different

way in later steps. In our study, we use the former method to

define the peak width.

According to the position and the width of a peak, we can

easily find the points covered by the peak and correspond them



approximately to one direction. Figure 5(a) shows an example

of the angle-based clustering result. As only the histogram of

θ has been computed and analyzed, the angle-based clustering

allows us to quickly identify the leaves of the major directions

at a comparably low computational cost.

However, due to the fact that the points belonging to two

neighboring leaves may have the same angles in the cylindrical

coordinates, these points may be in the same bin of the

histogram (e.g., the blue clusters in Figure 5(a)). This problem

is commonly referred as aliasing in signal processing. We

address this problem to refine the angle-based clustering result

using a shape-based clustering method.

2) Shape-based Clustering: Ideally, the points of each peak

can be isolated based on their distributions in the histogram.

Due to aliasing, there may be more that one leaf corresponding

to the points of each peak, and these leaves are spatially

disconnected. Intuitively, these points can be further separated

or clustered using more spatial information. However, not all

clustering methods can be applied here. For example, the k-

means clustering method calculates the distances of the points

to the center in each cluster and tends to group the points in

a circular or spherical cluster. As a leaf typically has a long

surface, the k-means clustering may produce many clusters

from the points of even one leaf. Therefore, a shape-based

clustering method is more suitable in this case. We choose

DBSCAN [8] in our study.

In DBSCAN, a seed point is usually randomly selected to

initialize the clustering process. It is desired that the point is

close to the center of an actual cluster, which can enhance

the clustering quality. However, in practice, it is difficult to

select such a seed point from a large-scale point cloud. In

particular, if the point falls on the overlapping edges of two

clusters, undesirable results that falsely classify the points can

be generated. To avoid this problem caused by randomization,

we select a point within the bin of a peak in the histogram

as the seed point. This is because the points of a peak most

likely correspond to the center of a cluster (i.e., the central

line of a leaf), and using such a seed point can facilitate us to

classify the points of a leaf. If all the peak points have been

used in clustering and there are still points unclassified, we

then randomly choose a remaining point as a seed point to

continue the clustering.

Figure 5(b) shows an example of the DBSCAN clustering

result. We can clearly see that DBSCAN can successfully

separate the unsegmented points of multiple leaves generated

in the angle-based clustering. In addition, we apply DBSCAN

on each cluster generated in the angle-based clustering, rather

than the entire point cloud, and thereby can significantly lower

the computational cost.

3) Shaped-based Refinement: Due to the point loss in the

noise removal step, it is possible that one leaf, particularly a

thin and long leaf, may be segmented into multiple clusters,

e.g., the clusters in the blue circle of Figure 5(b). We com-

bine the clusters that belong to one leaf together using two

conditions. First, we call two clusters Ci and Cj neighboring

clusters if they are close to each other in terms of the θ

(a) (b)

Fig. 4. Using regression volumes to determine the combination of two
candidate clusters Ci and Cj .

values. If two clusters belong to one leaf, they should form a

neighboring cluster in the 2D histogram. Therefore, we only

need to check if two neighboring clusters can form a single

leaf. Second, for the two neighboring clusters, if their radial

ranges overlap, they should not be combined into one cluster

or be regarded as a single leaf. This is because each leaf grows

in only one direction, and the radial range of one cluster should

not overlap with the range of the other cluster if both of them

belong to the same leaf.

We use these two conditions to find the clusters that poten-

tially belong to the same leaf. We further need to determine

if these clusters can be actually combined using a heuristic

metric. For two candidate clusters Ci and Cj , we construct

their individual regression volumes Vi and Vj . We note that

each regression volume may not contain all the point of a

cluster. We count the point numbers within Vi and Vj as Ni

and Nj , respectively. Then, we construct a regression volume

Vc of the union Cc = Ci

⋃
Cj , and count the point number

within Vc as Nc. If Nc/(Ni+Nj) > e, where e is a predefined

threshold, we consider that the combination of Vi and Vj

largely match with Vc, and thereby determine that Ci and Cj

can be combined, as shown in Figure 4(a). Otherwise, Ci and

Cj belong to different leaves, and should not be combined,

as shown in Figure 4(b). We set e = 0.9, which gives us

appropriate results in our study.

To construct a regression volume Vi of a point cluster Ci,

we first project all the points of Ci into the r-z plane. Second,

we fit a quadratic curve fi for all the points of Ci in the r-z
plane using the least square method. Then, we compute the

median value θm for the θ values of points in Ci. Finally, we

construct Vi as

Vi(r, θ, z) =

{
|fi(r)− z| < δz

|θ − θm| < δθ
(4)

where δz denotes the range of Vi in the r-z plane, and δθ
denotes the range of Vi in the r-θ plane. We set δz = 5 and

δθ = 15◦ in our study.

Using this method, we can effectively detect and combine

the clusters of the same leaf. Figure 5(c) shows an example,

where the two circled clusters are merged as a single cluster

using our refinement method, where these two clusters are

separated in the previous angle-based clustering and the shape-

based clustering, as shown in Figure 5(a) and (b).



(a) (b) (c)

Fig. 5. An example of our clustering results in the space of r, θ, and z. (a) We use the angle-based clustering to obtain the initial segmentation of the point
cloud. However, due to the aliasing problem, the points of two nearby leaves may be clustered together (e.g., the circled blue clusters). (b) We further apply
the shape-based clustering to separate these points. (c) We detect and combine the clusters that belong to the same leaf (e.g., the circled green cluster).

Fig. 6. Transform a leaf from its original x, y, z coordinate system into a new
l, s, z coordinate system, where the l and s axes are in the x-y plane. The
point cloud of the leaf is projected into the l-s plane. Then, we detect the 2D
edge points in the l-s plane. For an edge point, we can find its corresponding
3D point in the l, s, z coordinate system. We use these 3D edge points to
form two 3D curves fmin

lsz and fmax
lsz to fit the 3D edges of the leaf.

C. Surface Reconstruction

Once the points of a leaf are segmented from the entire

point cloud, we reconstruct a surface to fit these points using

the Cartesian coordinates. The points on the leaf surface and

the edges are tackled in different ways.

1) Surface Fitting: Least squares methods are a classic

tool for surface fitting. However, a direct application of

least squares tends to generate a smooth surface that can

lose certain local details of the leaf. A method using local

information is more suitable to reconstruct the leaf surface

and capture local details. Moving least squares (MLS) [11]

is widely used to generate a surface for data points. Instead

of constructing a global approximation, MLS constructs and

evaluates a local polynomial continuously over the entire

domain. MLS can be viewed as a local regression method.

Fig. 7. The edge points are found using a moving strip along the long axis
L of a leaf.

We use a local regression method called locally estimated

scatterplot smoothing (LOESS) [5], which is similar to MLS.

LOESS can reconstruct a continuous surface even with the

presence of the discontinuity of leaf points.

2) Edge Fitting: Although surface fitting can generate a

smooth surface for a leaf, it can result in very serrated lines

for the edges. To construct the edges of a leaf, we first detect

the 3D edge points and then use smooth 3D splines to fit the

edges.

It is difficult to directly detect the 3D points of the edges

of a leaf due to the noises along the edges. In this work, we

leverage the symmetrical property of a maize or rice leaf to

obtain the informative 2D projection of the point cloud of the

leaf. Then, we find the 2D edge points and their corresponding

3D points to fit the 3D edges of the leaf. Figure 6 illustrates the

process. We first transform the point cloud of a leaf from its

original x, y, z coordinate system into a new l, s, z coordinate

system using the principal component analysis (PCA) method.

We first project all the points of the leaf into the x-y plane.

For the projected 2D points of the leaf, we define the long axis

l of the leaf as the line from the leaf base to the leaf tip. The

short axis s is defined as an axis perpendicular to l in the 2D

plane. We use the classic PCA method to find these two axes.

If λ1 and λ2 are the two eigenvalues of the covariance matrix



Fig. 8. The results of fitting smooth edges to the leaf using a smoothing
spline.

of all the points in the 2D plane and λ1 > λ2, the eigenvector

v1 corresponding to λ1 is used as l, and v2 corresponding to

λ2 is used as s. We project all the points onto l and select the

point with the smallest projected value as the origin o in the

2D plane. We use the original z axis as the third axis in the

new coordinate system. Given the structure of a maize or rice

leaf, the most informative 2D projection of the point cloud

can be obtained in the l-s plane.

Second, we find the 2D edge points in the l-s plane. As

shown in Figure 7, we move a small strip along l. At any 2D

position q(lq, 0) on the l axis, the strip is parallel to the s
axis and is centered at q. We denote the width of the strip as

h. We find the range [smin
q , smax

q ] to contain most the points

inside the strip and exclude some outlier points along the s
axis. We set smin

q = m − 2σ and smax
q = m + 2σ, where

m and σ are the mean and the standard deviation of the s
values of the points inside the strip, respectively. We use the

two 2D points (lq, s
min
q ) and (lq, s

max
q ) to represent the 2D

edge points within the strip.

Then, we aim to find the corresponding 3D edge points

of (lq, s
min
q ) and (lq, s

max
q ). For (lq, s

min
q ), we compute the

average z value, zmin
q , of all the points within a small circle

ω centered at (lq, s
min
q ), and thereby obtain its corresponding

3D edge point (lq, s
min
q , zmin

q ). The radius of ω is set to h/2.

Similarly, we find another 3D edge point (lq, s
max
q , zmax

q ).
We find all the 3D edge points using this moving strip. We

empirically set h as 2% of the total length of the points along

the l axis.

After we find all the 3D edge points, we use smoothing

splines [6] to fit the edges. We generate two curves fmin
lsz and

fmax
lsz corresponding to the 3D point sets of (lq, s

min
q , zmin

q )
and (lq, s

max
q , zmax

q ), as shown in Figure 6. Figure 8 shows

an example of smooth edge fitting, where the blue and orange

lines correspond to the original detected edges with serrated

shapes, and the yellow and purple lines correspond to the

smooth fitted edges. Note that the l, s, z coordinate system

is constructed from the x, y, z coordinate system using the

PCA method. We can easily transform these two curves fmin
lsz

and fmax
lsz back to the x, y, z coordinate system as fmin

xyz and

fmax
xyz , respectively.

3) Mesh Generation: After surface fitting, we discretize the

surface functions to a 3D triangular mesh. We first use the

Delaunay triangulation algorithm [10] to generate a triangular

mesh in the x-y plane. Then, for each vertex of a triangle,

(a) (b)

(c) (d)

Fig. 9. A comparison of histogram shapes using different numbers of bins:
(a) N = 50, (b) N = 100, (c) N = 200, and (d) N = 500.

we use its x and y values to compute its z value through the

functions of the fitted surface. In this way, we can generate a

3D triangle mesh from the fitted surface.

IV. RESULTS AND DISCUSSION

A. Number of Bins

In this work, the histogram of the θ values is an important

guide in how the point cloud should be divided. An appropriate

choice of the number of bins determines if the peaks can be

successfully detected or not. We experiment the number of

bins N as 50, 100, 200, and 500, and compare the histogram

results in Figure 9 (a), (b), (c) and (d), respectively. We can

see that a small N cannot represent the histogram in a smooth

shape, while a very large N can cause high pulses in the

histogram. We found that N = 200 is a suitable choice for

the histogram and have used it in our study.

B. Histogram Curve

The number of peaks that can be detected in the histogram

of the θ values is mainly determined by three factors: the

smoothness of the fitted histogram curve used to detect the

peaks, the minimum distance between peaks, and the minimum

height of a peak. Figure 10 compares the effects of these

factors. Figure 10(a) shows the original histogram curve that

may not be smooth and can contain many peaks. Not all

these peaks correspond to actual leaves. For example, in

Figure 10(a), several peaks (within an orange circle) appear at

the low-count bins that are likely generated by noise. These

false peaks can be partially removed by setting the minimum

height minHeight of the peak and the minimum distance

minDistance between the peaks, as shown in Figure 10(b).

But there are still false peaks found on the histogram curve

(e.g., the ones in the magenta circle of Figure 10(b)).

The problem can be alleviated by further smoothing the

histogram curve. Moving average filter is commonly used

in signal processing, which takes the weighted sum of the

neighboring points of one point and uses the sum as the new

value for the point. Moving average can reduce many false

peaks detected in the histogram curve, as shown in Figure

10(c). However, a false peak (in the cyan circle of Figure



(a) (b)

(c) (d)

Fig. 10. The number of peaks (denoted by the green triangles) that can be
found for different curves: (a) the original histogram curve, (b) the original
histogram curve with minHeight = 5 and minDistance = 10, (c) the
curve generated using the moving average filter, and (d) the curve generated
using curve fitting.

10(c)) is found at a place where only one peak should exist.

A spline based curve fitting method, such as smoothing spline,

can be used here to better describe the distribution of peaks

in a histogram curve. The fitted histogram curve using a

smoothing spline is smoother than the ones obtained using

moving average. The peaks can also be correctly found without

any false peaks, as shown in Figure 10(d). Therefore, we

suggest using a histogram curve fitted with smoothing spline

for the task of peak detection.

C. Parameters of DBSCAN

The two key parameters, the search radius R and the

minimum number of points minPoints, largely determine

the effectiveness of DBSCAN. DBSCAN is sensitive to these

parameters such that changing them can generate many dif-

ferent results. Figure 11 shows a comparison of the different

clustering results obtained by changing these two parameters.

The plots in the left column show the effect of changing the

search radius R. When R = 5, all the points can be correctly

clustered, where the points in one cluster belong to only one

leaf, as shown in Figure 11(a). However, in Figure 11(b), when

the radius R is increased to 10, there is a false classification

where the points (within the red circle) that belong to two

leaves are in one cluster. As shown in Figure 11(c), when the

radius R is further increased to 100, the false classification gets

more severe where a cluster (e.g., the one in the red circle)

can contain the points of more than two leaves.

The minimum number of points minPoints for a point

to grow can also affect the clustering result. As shown in

Figure 11(d), when minPoints = 0, many small clusters

are detected. Some of these clusters are from the tips of

leaves and some are from noise (within the red circle). When

minPoints increases to 10 in Figure 11(e), some tiny clusters

will disappear. However, when minPoints is set to a high

value like 100, there points that belong to one leaf will be

cut into many medium clusters, as shown in Figure 11(f).

Although the separated clusters that belong to a leaf can be

combined using our shape-based refinement method, it is still

better to make the clustering results as accurate as possible,

(a) (d)

(b) (e)

(c) (f)

Fig. 11. A comparison of results of using different parameters: (a) R = 5,
minPoints = 50; (b) R = 10, minPoints = 50; (c) R = 20,
minPoints = 50; (d) R = 5, minPoints = 0; (e) R = 5,
minPoints = 10; and (f) R = 5, minPoints = 100.

which can also reduce the computation costs. We used R = 5
and minPoints = 50 for the point cloud in this work.

D. Complexity

The design in our pipeline has considerably lowered the

runtime complexity compared to alternative approaches. In

particular, there are two types of search operations in the

pipeline. One is the search of points that belong to a cluster in

DBSCAN. The other one is the search of clusters in combining

clusters that belong to a leaf.

Given n points, DBSCAN has an average runtime com-

plexity of O(n log n). As we use the histogram to find peaks

and apply an initial angle-based clustering of the point cloud,

we employ DBSCAN on each cluster from the angle-based

clustering, instead of the whole point cloud. If the point cloud

contains Np peaks in the histogram, then the average com-

plexity is Np ∗O( n
Np

log n
Np

) = O(n log n)− log Np ∗O(n),

which is smaller than the original complexity O(n log n) of

DBSCAN.

In the step of shape-based refinement, a direct approach

is to compare any two clusters and see if they can form a

bigger cluster. If there are Nc clusters, the complexity of this



approach is O(Nc(Nc−1)
2! ) = 1

2O(Nc(Nc−1)). In our method,

as we only compare neighboring clusters in terms of θ values,

the complexity is O(Nc − 1), which is much smaller than the

original complexity 1
2O(Nc(Nc − 1)).

E. Reconstruction Results

We compare the reconstructed meshes for all the leaves of

a maize plant using our method and existing approaches. Fig-

ure 12(a) shows the result of the Poisson surface reconstruction

method [15]. We can clearly see the bumpy surface caused

by noises, which are difficult to be tackled only using local

Poisson disks. Figure 12(b) shows the result of the B-spline

surface reconstruction [7], where the surface is much smoother

compared to the Poisson surface. However, this method cannot

obtain appropriate results in the region with high noises.

For example, in the highlighted region in Figure 12(b), the

reconstructed surface is twisted to over-fit the local noisy

point cloud. Our method addresses this issue by applying

local regression, and thereby can significantly improve the

reconstruction result, as shown in Figure 12(c). We note that

edge fitting can further improve the surface reconstruction for

leaves of plants, as shown in the images Figure 12(d).

We further quantitatively evaluate the reconstructed surfaces

using the variance of surface normals. Table I shows the

reconstruction results of eight leaves of a maize plant among

the Poisson method, the B-spline method, and our method

with and without edge fitting. We can clearly see that our

method can generate much smoother leaf surfaces with smaller

normal variances. In particular, when applying edge fitting,

the average variance of our method is only 28.7% and 56.8%

of ones of the Poisson and B-spline methods, respectively.

Figure 13 shows the real maize plant and our reconstructed

leaves. Our method can generate a reconstructed representation

approximating the real plant.

We enhance a final model to resemble the appearance of a

real plant by adding the textures of leaves and stalks, as well

as the pot when the plant grows. Figure 14 shows examples of

maize and rice plants. Our 3D reconstruction results can facil-

itate researchers to gain an intuitive but detailed understanding

of plants, and lead to possible new scientific discoveries.

TABLE I
A COMPARISON OF THE VARIANCE OF SURFACE NORMALS.

Method Leaf1 Leaf2 Leaf3 Leaf4 Leaf5 Leaf6 Leaf7 Leaf8 Average
Poisson 0.85 0.88 0.91 0.87 0.88 0.86 0.87 0.84 0.87
B-spline 0.21 0.88 0.29 0.48 0.79 0.15 0.15 0.60 0.44

Our method1 0.41 0.31 0.21 0.38 0.26 0.20 0.35 0.17 0.29

Our method2 0.33 0.28 0.18 0.26 0.25 0.18 0.33 0.16 0.25

V. CONCLUSION

We present a pipeline to reconstruct surface representations

from point clouds of plants, where the point clouds can be

generated by either active approaches or passive approaches.

After removing background and noises, we design a two-step

1Our method without edge fitting.
2Our method With edge fitting.

(a) (b)

(c) (d)

Fig. 12. A comparison of reconstructed meshes for leaves of a maize plant:
(a) Poisson surface reconstruction, (b) B-spline surface reconstruction, (c) our
method without edge fitting, and (d) our method with edge fitting.

(a) (b)

Fig. 13. A comparison of (a) the real plant and (b) the reconstructed leaves.

(a) (b)

Fig. 14. Rendering of 3D models with texture and lighting enhancements:
(a) a maize plant and (b) a rice plant at three time points.



clustering approach and the refinement process to effectively

and efficiently segment a point cloud into different compo-

nents by leveraging the structural properties of the maize

or rice plant. Then, we reconstruct each component using

surface fitting and edge fitting to ensure the smoothness of

resulting surfaces. The final results, with texture and lighting

enhancement, provide a faithful digital 3D representation of

the original plant in the real world. Our detailed experimental

study has explored the effectiveness of parameter changes

and provided useful guidelines on selecting parameters for

practical usages. Our method significantly enhances the quality

of 3D reconstruction for high-throughput plant phenotyping.

In our study, we leverage the constraints of the maize or rice

plant. However, these constraints do not always hold for plants

with more complex structures. In the future, we would like

to investigate algorithms to automatically characterize plant

structural properties and derive constraints for obtaining more

accurate reconstruction results. In addition, we plan to extend

our current pipeline to tackle time-varying 3D point cloud and

detect important plant dynamics during its process of growth.
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